
ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 3, March 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2315 64

Survey of Approaches to Improve Inter Virtual

Machine Communication Efficiency on Xen

Platform

Shivaraj Sankh
1
, Prof. Varsha Priya JN

2

Computer Engg., and information technology Veermata Jijabai Technological Institute (VJTI), Mumbai, India1,2

Abstract: Virtual Machines (VMs) are building blocks of today’s cloud computing infrastructure. VMs provide

isolation across applications and services while sharing a common hardware platform. At the same time network

intensive applications, such as web services/database applications, are being consolidated into single physical platform.
This leads to Network I/O workloads which are dominating in many data centers. Though strict isolation between co-

resident VMs ensures security and a lot of research interest is dedicated to strengthen this feature, which undermines

the potential communication channels and limits maximum achievable communication throughput between co-resident

VMs. Virtual Network Interface (VNI) based communication serves the purpose of transparency however traversal

through entire network stack degrades the performance when communicating VMs are co-located. Data integrity is also

compromised as data might travel unprotected via an insecure path where it could be altered or intercepted. Recently

proposed Inter Virtual Machine Communication (IVMC) methods for co-located VMs include shared memory,

customized libraries or API. Though shared memory based approaches seems like the obvious solution, they have

certain issues regarding security and transparency. None of these initiatives take security considerations into account.

Unfortunately none of these solutions meet all the requirements of IVMC.

Keywords : IVMC, Virtual Machine Communication, Shared Memory Communication

I. INTRODUCTION

Virtualization has become integral part of modern Data

Centers, as it enables sharing of underlying hardware re-

sources and provides well defined boundaries to each

application. Virtualization provides consolidation of
different virtual machines on a single physical machine for

power saving, migration of virtual machine for load

balancing etc. Virtualization optimizes resource utilization

by providing full control of resource allocation to

administrator. Hypervisor or Virtual Machine Manager

(VMM) is hardware allocation and management

software.VMM allows each virtual machine to access the

resources like CPU, disk, memory, network etc. At the

same time VMM isolates different virtual machines from

each other. Virtualization classification can be done by the

technique with which hardware is emulated to the guest

operating system (OS). They are as follows:

A. Full Virtualization

VMM controls the hardware resources and emulates it to

guest OS without any modification. Almost complete

simulation of the actual hardware is done by VMM, which

typically consists of a guest OS, to run unmodified. One of

the ways deployed to do this is binary in which non

virtualizable instructions are replaced with new sequences

of instructions that have the intended effect on the virtual

hardware.

Ex - VMWare Workstation, VirtualBox, Kernel Virtual
Machine (KVM[1]).

B. Paravirtualizaion

In para virtualization a hardware environment is not

completely simulated by VMM but certain changes are

made in guest operating system to adapt it to run in virtual

environment. The guest OS is modified to change non

virtualizable privileged instructions with hypercalls to the

VMM. Thus VMM provides API to guest OS to access the

hardware.
Ex - Xen

C. Hardware-assisted virtualization

Hardware-assisted virtualization improves the efficiency

of hardware virtualization. It involves employing specially

de-signed CPUs and hardware components that help

improve the performance of a guest OS.

Ex - Intel-VT, AMD-V with hypervisors like Kernel

Virtual Machine (KVM).

II. BACKGROUND

A. Xen Architecture[2]

Xen architecture is a 3-layer architecture, Hardware layer,

Xen VMM layer, Guest OS layer. Hardware layer include

all the available hardware resources. Xen VMM is a

virtualization layer which emulates hardware resources to

guest OS. Guest operating system layer contains all guest

OS’s installed.

In Xen terminology, guest operating OS is called as

domain. One domain with highest privileges has direct

access to all the hardware resources. This domain is called
as domain-0 or dom0. Xen is booted in dom0

automatically. All other domains Don’t have access to any

resource directly. These domains are called as domain-U

or domU. DomU need to access the hardware resources

through dom0 using Xen API.

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 3, March 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2315 65

B. Xen Network Interface

Xen virtualization provides near native machine

performance through the use of para-virtualization. Xen

provides virtualized network devices to each guest OS,

instead of real physical network interface cards. The
actual network drivers can either execute within Dom0 or

within Isolated Driver Domains (IDD), which are

essentially driver specific to virtual machines.

Fig. 1. Split Netfront-Netback driver architecture in Xen

Communication between Dom0 and DomU using split

network-driver architecture which is shown in Figure 1

enables multiplexing of physical network card. The driver

domain hosts the backend of the split network driver,

called netback, and the DomU hosts the frontend, called
netfront. The net-back and netfront interacts using high-

level network device abstraction. The primary use of the

grant table in network I/O is to provide a fast and secure

mechanism for unprivileged domains (DomUs) to receive

indirect access to the network hardware via the privileged

driver domain. They enable the driver domain to set up a

DMA based data transfer directly to/from the system

memory of a DomU rather than performing the DMA

to/from driver domain’s memory with the additional

copying of the data between DomU and driver domain.

The grant table can be used to either share or transfer

pages between the DomU and driver domain.

C. Inter Virtual Machine Communication obstacles [3]

Following are the major obstacles to efficient inter-VM

communication:

1) Communication via TCP/IP network stack: Xen plat-

form enables transparent communication across VM

boundaries using standard TCP/IP sockets. This results in

a significant performance penalty when communicating

Virtual machines are on same host. Packet transmission

and reception involves traversal of TCP/IP network stack
and invocation of multiple Xen hypercalls.

2) CPU scheduling without communication awareness:

If the CPU scheduler is unaware of communication

requirements of co-located VMs, then it might make non-

optimal scheduling decisions that increase the inter-VM

communication latency. For example, the Xen hypervisor

has two schedulers: the simple earliest deadline rst (SEDF)

scheduler and the Credit scheduler. The SEDF scheduler

makes each VM specify a required time slice in a certain

period; a (slice, period) pair represents how much CPU

time a domain is guaranteed in a period. The SEDF

scheduler preferentially schedules a domain with the

earliest deadline. It requires finely tuned parameter

configuration for meeting VMs’ performance

requirements. On the other hand, the Credit scheduler is a
proportional share scheduler with a load balancing feature

for SMP systems. The credit scheduler is simple but

provides reasonable fairness and performance guarantee

for CPU-intensive guests.

3) Absence of real-time inter-VM interactions: Another

problem with current virtualization platforms is the lack of

support for real-time inter VM interactions. For example,

after one VM transmits a packet to another co-located peer

VM, the peer VM must be scheduled as quickly as

possible to guarantee lowest possible message latency.
Also when the peer VM is scheduled, the CPU scheduler

within the peer VM needs to ensure that the incoming

message is processed in a timely manner. The

unpredictability of current VM scheduling mechanisms

makes it hard to provide any form of timeliness

guarantees. Since the hypervisor lacks knowledge of

timing requirements of applications within each VM, it

cannot meaningfully provide timing guarantees for

interactions between co-located VMs. This semantic gap is

the root cause of poor support for real-time inter-VM

interactions.

III. INTER-VM COMMUNICATION TECHNIQUES

Two co-located VMs in virtualized environment

communi-cates through their virtual network interfaces.

Each packet has to traverse through an intermediate driver

domain using multiple hypercalls which results in low

network throughput. This overhead can be reduced with

simple use of shared memory channel between the

communicating domains for exchanging network packets,

which require fewer hypercalls and bypasses part or whole

of the default network data path. This section follows

description of techniques employing shared memory
communication:

A. XenSockets[4]

XenSocket uses a shared memory buffer between

communicating VMs to completely bypass the network

interface stack. Receiver VM allocates 128 KB pool of

pages and asks the Xen hypervisor to share those pages to

the sender VM. Circular buffer is used to reuse the pages.

Sender writes the data to the one way communication

pipe, receiver can the data immediately. Efficient data

transfer algorithm which uses one shared control variable
that indicates number of bytes available for writes in a

circular buffer. Sender and receiver maintain local

read/write offsets into the circular buffer. A new

XenSocket type socket family is used to communicate

across the shared memory channels. Network

applications/libraries have to use this new socket type in

order to take advantage of XenSocket. The core operations

on XenSocket are bind() and connect(). These are

mandatory steps for the sender and receiver to negotiate

the control information and setup the shared memory.

After the two functions are successfully called, the

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 3, March 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2315 66

communication channel is set up and ready to exchange

data packets. XenSocket provides a shared memory

communication mechanism that exports a new socket-like

interface. Xensocket does not provide automatic discovery

of co-location and migration of communicating VMs.

B. XWay[5]

XWay provides an accelerated communication path

between co-located VMs. Xway uses shared memory

channel and pro-vides full binary compatibility for

applications communicating over TCP sockets. No

modification is required in applications

using TCP sockets in order to use the shared memory

channel. As shown in Figure 2, XWay is composed of

three layers:

Fig. 2. Xway Architecture

Switch, protocol and driver. To reduce the development

effort as much as possible, a virtual socket, called the

XWay socket, is introduced. The XWay switch layer

transparently switches between TCP socket and XWay

protocol. It chooses which lower layer protocol should be

called whenever a message is sent. At the very first packet

delivery attempt, XWay switch determines whether the
destination domain resides in the same physical machine

by consulting a static file that lists all co-located VMs.

XWay then creates a shared memory channel, and binds it

to the XWay socket. In order to set up the shared memory

channel and an event channel, the two VMs have to

exchange the grant reference (or identity) of the shared

memory and the port number of the event channel. This is

normally done through another control channel. All the

subsequent packets from the same connection are

redirected to the shared memory channel. Otherwise, the

switch layer simply forwards the requests to the TCP
layer. XWay protocol layer supports TCP socket

semantics for data send/receive operations such as

blocking and non-blocking mode I/O. XWay defines a

virtual device and a device driver to represent XWay

socket.

XWay achieves high performance by providing direct

shared-memory communication channel between co-

located VMs. However, XWay can only support TCP

communication, and requires significant changes to the

Linux kernel code

C. Inter Virtual Machine Communication (IVC)[6]

IVC enables shared memory regions through the Xen

grant tables. IVC consists of two components: a user space

communication library and a kernel driver. The client uses

IVC user library to start the connection setup. Once
connection is setup, client process gets notification of the

result. Internally, the IVC user library allocates a shared

memory region. The user library asks the kernel driver to

allow the access of particular region. The IVC library on

the destination VM then maps the communication buffer

to its own address space through the kernel driver.

Communication establishment follows a client-server

model, and communication uses producer/consumer

circular ring buffer. IVC supports automatic discovery of

peers on the same node. An IVC backend driver is run in

the privileged Domain-0. Each parallel job that intends to
use IVC is assigned a unique magic ID by the cluster

administrator. All registered domains with the same magic

ID form a local communication group in which processes

can communicate through IVC. When a computing

process initializes, it notifies the IVC library of the magic

ID through a function call. This process is then registered

to the backend driver. Assignment of this unique magic ID

across the cluster can be provided by batch schedulers

though the paper does not provide additional details A

communication coordinator is introduced to handle

migration via dynamically creating and tearing down IVC
connections as the VM migrates. The communication

coordinator keeps lists of channels and outstanding

packets that are being actively used on the same host. IVC

kernel driver gets a callback from the Xen hypervisor once

the VM is about to migrate. It then notifies the IVC user

library to stop writing data into the send ring to prevent

data loss during migration; after that, the IVC kernel

notifies all other VMs on the same host through event

channels that the VM is migrating. IVC then tells user

programs that the IVC channel will be torn down due to

migration. Finally, IVC un maps the shared memory

pages. Once migrated, IVC will be available to peers on
the new host.

D. MMNet[7]

MMNet differs from other approaches in that it avoids

copying of data across VM kernels by mapping the entire

kernel address space of one VM into the address space of

its communicating peer VM with read only access.

MMNet eliminates data copies and hypervisor calls in the

critical path by mapping in the entire kernel address space

of the peer VM. Relaxation of memory isolation between

VMs compromises security aspect. Although a bug in one
VM cannot corrupt the peer VM’s memory because of the

read-only mapping, it could potentially crash the peer VM

This allows MMNet to make its link-layer driver a

loadable kernel module without affecting the behavior of

other system functions. MMNet implements and exports a

standard Ethernet interface. MMNet interjects at the link-

layer by updating routing tables. Since this is the lowest

layer in the protocol stack, most of the OS subsystems and

all the user applications can work transparently.

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
Vol. 2, Issue 3, March 2015

Copyright to IARJSET DOI 10.17148/IARJSET.2015.2315 67

Fig. 3. Xenloop

VM discovery does not require a coordinating MMNet

module in Domain 0. Each joining VMs write to global
XenStore directory to advertise its presence. Each member

VM watches the directory for membership updates.

When a VM is created, new MMNet connection channels

are established dynamically between the new VM and

other co-located VMs and new IP routing table entries are

added to route traffic to the MMNet Ethernet interface.

Within a VM, running applications can seamlessly switch

to (or from) the MMNet connection path by updating the

IP routing tables appropriately.

VM destruction will trigger removal of the routing table

entries and tear down of the MMNet channel. Within the

MMNet channel, data is encapsulated in a scatter-gather

(SG) array. The shared meta-data segment which contains

pointer to SG array and length is similar to Xen I/O rings

which uses circular buffer consumer/producer algorithm.

Translation between sk buff and SG array happens before

packet send and after packet receive, similar to the

mechanism in netfront but without copying and page

flipping. Security can be a major concern for MMNet

when the communicating VMs cannot fully trust each
other.

E. Xenloop[8]

Xenloop provides direct communication channel between

two co-located VMs without the intervention Domain-0,

along the data path. Xenloop can be used with existing

network applications without any code modification,

compilation or linking again.

There is no need to modify guest OS code or Xen

hypervisor code to use it with Xenloop since it works as a
self contained Linux kernel module. Guest VMs with

Xenloop can automatically detect and setup/close

XenloopChannels as needed. Xenloop also supports

migration of Guests without disrupting ongoing network

communications, as well as it supports switching between

the standard network channel and the Xenloop channel.

Using a handshake protocol dynamic connection setup is

done between communicating co-located VMs. Figure 3

shows the core of Xenloop module which is a high-speed

bidirectional inter-VM communication channel which is

further divided into three components.

Two unidirectional first-in-first-out (FIFO) data channels

and one bidirectional event channel. The two FIFO

channels are set up using the inter-domain shared memory

facility. Event channel notifies the presence of data

channel to endpoints using 1-bit event notification

mechanism. The Xenloop module contains a guest-specific

software bridge that is capable of intercepting every

outgoing packet from the network layer in order to inspect

its header to determine the packet’s destination. Netfilter

hook mechanism provided by Linux is used to perform
packet interception.

IV. CONCLUSION

We discussed major obstacles as well as different

approaches towards efficient Inter Virtual Machine

Communication. Shared memory approach improve

throughput and reduce latency as it bypasses the network

stack and works with fewer hypercalls. MMNet avoids

shared memory with direct memory reference however it

undermine the security aspect by isolation relaxation.

Though lot of research interest is dedicated towards
IVMC, Security aspect is largely neglected.

Synchronization, live migration support and application

transparency need to be embedded in a single techniques

with enhanced security features.

REFERENCES
[1] Avi Kivity, Yani Kamay, Dor Laor, Uri Lublin, and Anthony

Liguori, KVM: the Linux Virtual Machine Monitor,

http://www.kernel.org. Ot-tawa, Ontario Canada. June 27th-30th, 2007.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neuge-bauer, I. Pratt, and A. Warfield, ”Xen and the art of

virtualization,” in SOSP ’03: Proceedings of the nineteenth ACM

symposium on Operating systems principles. New York, NY, USA:

ACM, October 2003, pp.164-177

[3] Jian Wang, Survey of State-of-the-art Inter-VM communication
Mecha-nisms, Research Proficiency Report Binghamton University, 2009.

[4] Suzanne McIntosh, IBM T. J. Watson Research Center, ”XenSocket:

Interdomain transport for VMs”, Xen Summit 2007.

[5] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyu-Supn Shin, and Jin-

Soo Kim. Inter-domain socket communications supporting high

performance and full binary compatibility on Xen. In Proceedings of

the fourth ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 11-20, 2008.

[6] W. Huang, M. Koop, Q. Gao, and D.K. Panda. Virtual machine

aware communication libraries for high performance computing. In

Proceedings of SuperComputing, Reno, NV, Nov. 2007

[7] Kiran Srinivasan Prashanth Radhakrishnan. Mmnet: An efficient
inter-vm communication mechanism. In Proceedings of Xen Summit, 2008

[8] Kiran Srinivasan Prashanth Radhakrishnan. Mmnet: An efficient

inter-vm communication mechanism. In Proceedings of Xen Summit, 2008.

[9] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. Xenloop: A

transparent high performance inter-VM network loopback. In

Proceedings of the 17th International Symposium on High

Performance Distributed Computing (HPDC), pages 109-118, 2008.

