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Abstract: Virtual Machines (VMs) are building blocks of today’s cloud computing infrastructure. VMs provide 

isolation across applications and services while sharing a common hardware platform. At the same time network 

intensive applications, such as web services/database applications, are being consolidated into single physical platform. 
This leads to Network I/O workloads which are dominating in many data centers. Though strict isolation between co-

resident VMs ensures security and a lot of research interest is dedicated to strengthen this feature, which undermines 

the potential communication channels and limits maximum achievable communication throughput between co-resident 

VMs. Virtual Network Interface (VNI) based communication serves the purpose of transparency however traversal 

through entire network stack degrades the performance when communicating VMs are co-located. Data integrity is also 

compromised as data might travel unprotected via an insecure path where it could be altered or intercepted. Recently 

proposed Inter Virtual Machine Communication (IVMC) methods for co-located VMs include shared memory, 

customized libraries or API. Though shared memory based approaches seems like the obvious solution, they have 

certain issues regarding security and transparency. None of these initiatives take security considerations into account. 

Unfortunately none of these solutions meet all the requirements of IVMC. 
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I. INTRODUCTION 

Virtualization has become integral part of modern Data 

Centers, as it enables sharing of underlying hardware re-

sources and provides well defined boundaries to each 

application. Virtualization provides consolidation of 
different virtual machines on a single physical machine for 

power saving, migration of virtual machine for load 

balancing etc. Virtualization optimizes resource utilization 

by providing full control of resource allocation to 

administrator. Hypervisor or Virtual Machine Manager 

(VMM) is hardware allocation and management 

software.VMM allows each virtual machine to access the 

resources like CPU, disk, memory, network etc. At the 

same time VMM isolates different virtual machines from 

each other. Virtualization classification can be done by the 

technique with which hardware is emulated to the guest 

operating system (OS). They are as follows: 
 

A. Full Virtualization 

VMM controls the hardware resources and emulates it to 

guest OS without any modification. Almost complete 

simulation of the actual hardware is done by VMM, which 

typically consists of a guest OS, to run unmodified. One of 

the ways deployed to do this is binary in which non 

virtualizable instructions are replaced with new sequences 

of instructions that have the intended effect on the virtual 

hardware. 

Ex - VMWare Workstation, VirtualBox, Kernel Virtual 
Machine (KVM[1]). 

 

B. Paravirtualizaion 

In para virtualization a hardware environment is not 

completely simulated by VMM but certain changes are 

made in guest operating system to adapt it to run in virtual  

 

 

environment. The guest OS is modified to change non  

virtualizable privileged instructions with hypercalls to the 

VMM. Thus VMM provides API to guest OS to access the 

hardware. 
Ex - Xen 

 

C. Hardware-assisted virtualization 

Hardware-assisted virtualization improves the efficiency 

of hardware virtualization. It involves employing specially 

de-signed CPUs and hardware components that help 

improve the performance of a guest OS. 

Ex - Intel-VT, AMD-V with hypervisors like Kernel 

Virtual Machine (KVM). 

 

II. BACKGROUND 

 
A. Xen  Architecture[2]  

Xen architecture is a 3-layer architecture, Hardware layer, 

Xen VMM layer, Guest OS layer. Hardware layer include 

all the available hardware resources. Xen VMM is a 

virtualization layer which emulates hardware resources to 

guest OS. Guest operating system layer contains all guest 

OS’s installed. 

 

In Xen terminology, guest operating OS is called as 

domain. One domain with highest privileges has direct 

access to all the hardware resources. This domain is called 
as domain-0 or dom0. Xen is booted in dom0 

automatically. All other domains Don’t have access to any 

resource directly. These domains are called as domain-U 

or domU. DomU need to access the hardware resources 

through dom0 using Xen API. 
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B. Xen Network Interface 

Xen virtualization provides near native machine 

performance through the use of para-virtualization. Xen 

provides virtualized network devices to each guest OS, 

instead of real physical network interface cards. The 
actual network drivers can either execute within Dom0 or 

within Isolated Driver Domains (IDD), which are 

essentially driver specific to virtual machines. 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1.  Split  Netfront-Netback driver architecture in Xen 

Communication between Dom0 and DomU using split 

network-driver architecture which is shown in Figure 1 

enables multiplexing of physical network card. The driver 

domain hosts the backend of the split network driver, 

called netback, and the DomU hosts the frontend, called 
netfront. The net-back and netfront interacts using high-

level network device abstraction. The primary use of the 

grant table in network I/O is to provide a fast and secure 

mechanism for unprivileged domains (DomUs) to receive 

indirect access to the network hardware via the privileged 

driver domain. They enable the driver domain to set up a 

DMA based data transfer directly to/from the system 

memory of a DomU rather than performing the DMA 

to/from driver domain’s memory with the additional 

copying of the data between DomU and driver domain. 

The grant table can be used to either share or transfer 

pages between the DomU and driver domain. 
 

C. Inter Virtual Machine Communication obstacles [3] 

Following are the major obstacles to efficient inter-VM 

communication: 

 

1) Communication via TCP/IP network stack: Xen plat-

form enables transparent communication across VM 

boundaries using standard TCP/IP sockets. This results in 

a significant performance penalty when communicating 

Virtual machines are on same host. Packet transmission 

and reception involves traversal of TCP/IP network stack 
and invocation of multiple Xen hypercalls.  

 

2) CPU scheduling without communication awareness: 

If the CPU scheduler is unaware of communication 

requirements of co-located VMs, then it might make non-

optimal scheduling decisions that increase the inter-VM 

communication latency. For example, the Xen hypervisor 

has two schedulers: the simple earliest deadline rst (SEDF) 

scheduler and the Credit scheduler. The SEDF scheduler 

makes each VM specify a required time slice in a certain 

period; a (slice, period) pair represents how much CPU 

time a domain is guaranteed in a period. The SEDF 

scheduler preferentially schedules a domain with the 

earliest deadline. It requires finely tuned parameter 

configuration for meeting VMs’ performance 

requirements. On the other hand, the Credit scheduler is a 
proportional share scheduler with a load balancing feature 

for SMP systems. The credit scheduler is simple but 

provides reasonable fairness and performance guarantee 

for CPU-intensive guests.  

 

3) Absence of real-time inter-VM interactions: Another 

problem with current virtualization platforms is the lack of 

support for real-time inter VM interactions. For example, 

after one VM transmits a packet to another co-located peer 

VM, the peer VM must be scheduled as quickly as 

possible to guarantee lowest possible message latency. 
Also when the peer VM is scheduled, the CPU scheduler 

within the peer VM needs to ensure that the incoming 

message is processed in a timely manner. The 

unpredictability of current VM scheduling mechanisms 

makes it hard to provide any form of timeliness 

guarantees. Since the hypervisor lacks knowledge of 

timing requirements of applications within each VM, it 

cannot meaningfully provide timing guarantees for 

interactions between co-located VMs. This semantic gap is 

the root cause of poor support for real-time inter-VM 

interactions.  
 

III. INTER-VM COMMUNICATION TECHNIQUES 

Two co-located VMs in virtualized environment 

communi-cates through their virtual network interfaces. 

Each packet has to traverse through an intermediate driver 

domain using multiple hypercalls which results in low 

network throughput. This overhead can be reduced with 

simple use of shared memory channel between the 

communicating domains for exchanging network packets, 

which require fewer hypercalls and bypasses part or whole 

of the default network data path. This section follows 

description of techniques employing shared memory 
communication: 

 

A. XenSockets[4] 

XenSocket uses a shared memory buffer between 

communicating VMs to completely bypass the network 

interface stack. Receiver VM allocates 128 KB pool of 

pages and asks the Xen hypervisor to share those pages to 

the sender VM. Circular buffer is used to reuse the pages. 

Sender writes the data to the one way communication 

pipe, receiver can the data immediately. Efficient data 

transfer algorithm which uses one shared control variable 
that indicates number of bytes available for writes in a 

circular buffer. Sender and receiver maintain local 

read/write offsets into the circular buffer. A new 

XenSocket type socket family is used to communicate 

across the shared memory channels. Network 

applications/libraries have to use this new socket type in 

order to take advantage of XenSocket. The core operations 

on XenSocket are bind() and connect(). These are 

mandatory steps for the sender and receiver to negotiate 

the control information and setup the shared memory. 

After the two functions are successfully called, the 
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communication channel is set up and ready to exchange 

data packets. XenSocket provides a shared memory 

communication mechanism that exports a new socket-like 

interface. Xensocket does not provide automatic discovery 

of co-location and migration of communicating VMs. 
 

B. XWay[5] 

XWay provides an accelerated communication path 

between co-located VMs. Xway uses shared memory 

channel and pro-vides full binary compatibility for 

applications communicating over TCP sockets. No 

modification is required in applications 

using TCP sockets in order to use the shared memory 

channel. As shown in Figure 2, XWay is composed of 

three layers: 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2.  Xway Architecture 

 

Switch, protocol and driver. To reduce the development 

effort as much as possible, a virtual socket, called the 

XWay socket, is introduced. The XWay switch layer 

transparently switches between TCP socket and XWay 

protocol. It chooses which lower layer protocol should be 

called whenever a message is sent. At the very first packet 

delivery attempt, XWay switch determines whether the 
destination domain resides in the same physical machine 

by consulting a static file that lists all co-located VMs. 

XWay then creates a shared memory channel, and binds it 

to the XWay socket. In order to set up the shared memory 

channel and an event channel, the two VMs have to 

exchange the grant reference (or identity) of the shared 

memory and the port number of the event channel. This is 

normally done through another control channel. All the 

subsequent packets from the same connection are 

redirected to the shared memory channel. Otherwise, the 

switch layer simply forwards the requests to the TCP 
layer. XWay protocol layer supports TCP socket 

semantics for data send/receive operations such as 

blocking and non-blocking mode I/O. XWay defines a 

virtual device and a device driver to represent XWay 

socket. 

 

XWay achieves high performance by providing direct 

shared-memory communication channel between co-

located VMs. However, XWay can only support TCP 

communication, and requires significant changes to the 

Linux kernel code 

C. Inter Virtual Machine Communication (IVC)[6] 

IVC enables shared memory regions through the Xen 

grant tables. IVC consists of two components: a user space 

communication library and a kernel driver. The client uses 

IVC user library to start the connection setup. Once 
connection is setup, client process gets notification of the 

result. Internally, the IVC user library allocates a shared 

memory region. The user library asks the kernel driver to 

allow the access of particular region. The IVC library on 

the destination VM then maps the communication buffer 

to its own address space through the kernel driver. 

Communication establishment follows a client-server 

model, and communication uses producer/consumer 

circular ring buffer. IVC supports automatic discovery of 

peers on the same node. An IVC backend driver is run in 

the privileged Domain-0. Each parallel job that intends to 
use IVC is assigned a unique magic ID by the cluster 

administrator. All registered domains with the same magic 

ID form a local communication group in which processes 

can communicate through IVC. When a computing 

process initializes, it notifies the IVC library of the magic 

ID through a function call. This process is then registered 

to the backend driver. Assignment of this unique magic ID 

across the cluster can be provided by batch schedulers 

though the paper does not provide additional details A 

communication coordinator is introduced to handle 

migration via dynamically creating and tearing down IVC 
connections as the VM migrates. The communication 

coordinator keeps lists of channels and outstanding 

packets that are being actively used on the same host. IVC 

kernel driver gets a callback from the Xen hypervisor once 

the VM is about to migrate. It then notifies the IVC user 

library to stop writing data into the send ring to prevent 

data loss during migration; after that, the IVC kernel 

notifies all other VMs on the same host through event 

channels that the VM is migrating. IVC then tells user 

programs that the IVC channel will be torn down due to 

migration. Finally, IVC un maps the shared memory 

pages. Once migrated, IVC will be available to peers on 
the new host. 

 

D. MMNet[7] 

MMNet differs from other approaches in that it avoids 

copying of data across VM kernels by mapping the entire 

kernel address space of one VM into the address space of 

its communicating peer VM with read only access. 

MMNet eliminates data copies and hypervisor calls in the 

critical path by mapping in the entire kernel address space 

of the peer VM. Relaxation of memory isolation between 

VMs compromises security aspect. Although a bug in one 
VM cannot corrupt the peer VM’s memory because of the 

read-only mapping, it could potentially crash the peer VM 

This allows MMNet to make its link-layer driver a 

loadable kernel module without affecting the behavior of 

other system functions. MMNet implements and exports a 

standard Ethernet interface. MMNet interjects at the link-

layer by updating routing tables. Since this is the lowest 

layer in the protocol stack, most of the OS subsystems and 

all the user applications can work transparently. 
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Fig. 3.  Xenloop 

VM discovery does not require a coordinating MMNet 

module in Domain 0. Each joining VMs write to global 
XenStore directory to advertise its presence. Each member 

VM watches the directory for membership updates.  

 

When a VM is created, new MMNet connection channels 

are established dynamically between the new VM and 

other co-located VMs and new IP routing table entries are 

added to route traffic to the MMNet Ethernet interface. 

Within a VM, running applications can seamlessly switch 

to (or from) the MMNet connection path by updating the 

IP routing tables appropriately.  

 
VM destruction will trigger removal of the routing table 

entries and tear down of the MMNet channel. Within the 

MMNet channel, data is encapsulated in a scatter-gather 

(SG) array. The shared meta-data segment which contains 

pointer to SG array and length is similar to Xen I/O rings 

which uses circular buffer consumer/producer algorithm.  

 

Translation between sk buff and SG array happens before 

packet send and after packet receive, similar to the 

mechanism in netfront but without copying and page 

flipping. Security can be a major concern for MMNet 

when the communicating VMs cannot fully trust each 
other. 

 

E. Xenloop[8] 

Xenloop provides direct communication channel between 

two co-located VMs without the intervention Domain-0, 

along the data path. Xenloop can be used with existing 

network applications without any code modification, 

compilation or linking again.  

 

There is no need to modify guest OS code or Xen 

hypervisor code to use it with Xenloop since it works as a 
self contained Linux kernel module. Guest VMs with 

Xenloop can automatically detect and setup/close 

XenloopChannels as needed. Xenloop also supports 

migration of Guests without disrupting ongoing network 

communications, as well as it supports switching between 

the standard network channel and the Xenloop channel. 

Using a handshake protocol dynamic connection setup is 

done between communicating co-located VMs. Figure 3 

shows the core of Xenloop module which is a high-speed 

bidirectional inter-VM communication channel which is 

further divided into three components.  
 

Two unidirectional first-in-first-out (FIFO) data channels 

and one bidirectional event channel. The two FIFO 

channels are set up using the inter-domain shared memory 

facility. Event channel notifies the presence of data 

channel to endpoints using 1-bit event notification 

mechanism. The Xenloop module contains a guest-specific 

software bridge that is capable of intercepting every 

outgoing packet from the network layer in order to inspect 

its header to determine the packet’s destination. Netfilter 

hook mechanism provided by Linux is used to perform 
packet interception. 

 

IV. CONCLUSION 

We discussed major obstacles as well as different 

approaches towards efficient Inter Virtual Machine 

Communication. Shared memory approach improve 

throughput and reduce latency as it bypasses the network 

stack and works with fewer hypercalls. MMNet avoids 

shared memory with direct memory reference however it 

undermine the security aspect by isolation relaxation. 

Though lot of research interest is dedicated towards 
IVMC, Security aspect is largely neglected. 

Synchronization, live migration support and application 

transparency need to be embedded in a single techniques 

with enhanced security features. 
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